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Background
In order to make control law

design effective one needs to

make the most of the available

system information. This is

very true for the case of the

control law design of a mod-

ern fighter aircraft. The flight

characteristics of this kind of system varies from stable to unstable,

from linear to nonlinear, and the flight control system needs to deal

with all combinations of these. Also, the process noise characteristics

for atmospheric flight is colored, which adds to the system identification

complexity.

This gives rise to some:

Challenges:

•Nonlinear system

•Closed-loop data

•Partially unknown disturbance

characteristics

Engineering constraints:

•Accuracy

•Scalability

•User-independent system iden-

tification results

Theory
Flight dynamics can, in general, be described as a nonlinear system

xk+1 = F (xk, uk, wk) (1a)

yk = H(xk, uk, vk) (1b)

where F describes the nonlinear dynamics of flight including the effect

of the colored noise from atmospheric turbulence wk, and h is the mea-

surement equation disturbed by white measurement noise vk. For the

aircraft application the measurement is yk = xk + vk.

A prediction error method (PEM) is used for the system identification:

x̂k+1(θ) = Fm( x̂k(θ), uk, θ) + Kk(θ)εk(θ) (2a)

ŷk(θ) = x̂k(θ) (2b)

εk(θ) = yk − ŷk(θ) (2c)

So, the question is ...

Can a simple parametrized observer (PO)
stabilize this predictor?

In this approach the observer gain Kk(θ) is assumed to be constant and

is added to the parameters to be identified:

θ =

[
θf
θK

]
(3)

where θf are the parameters that appear in f and θK = vec(Kk) is a

vector containing the observer gain parameters.

This is compared to another approach using the extended Kalman fil-

ter (EKF), where Kk(θ) is computed at each time step using a linearized

model:

P xx
k|k−1(θ) = Ak(θ)P xx

k−1|k−1(θ)AT
k (θ) + Q

Kk(θ) = P xx
k|k−1(θ)CT (θ) [C(θ)P xx

k|k−1(θ)CT (θ) + R]−1

P xx
k|k(θ) = (I −Kk(θ)C(θ))P xx

k|k−1(θ)

(4)

where the predicted covariance matrix P xx
k|k(θ) represents the uncertainty

of the state prediction. Q and R are tuning parameters set by the user.

Example
For this example the dynamic model in (2a) is given by[

α̂k+1

q̂k+1

]
=

[
θ1α̂k + θ2q̂k

Tsf (θ8, . . . , θ25, α̂k) + θ3q̂k

]
+

[
θ4 θ5

θ6 θ7

] [
δe k
δc k

]
(5)

which has two states (angle-of-attack α and pitch-rate q), two inputs

(elevator δe and canard δc) and 25 parameters to be estimated. The

nonlinearity is represented by a piece-wise affine function of the angle-

of-attack.

Results
Simulations have been performed with light turbulence to mimic a real

flight test. In these the pitch stability of the aircraft is unstable and non-

linear as shown in the top figure. The lower figure shows a case where

the system has been linearized, but still, a nonlinear predictor is used.
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Simulations of nonlinear system with light atmospheric turbulence
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Simulations of linear system with light atmospheric turbulence
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•The results indicate that the simple PO approach does a better job

than the EKF approach in identifying the system under consideration,

both in the linear and nonlinear case.

•There are no tuning parameters in the PO approach that the user has

to set making the PO approach a easy-to-use engineering tool.
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