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Main idea
Structure from Motion and Bundle Adjustment are well established imag-

ing techniques for reconstruction of 3D structures and camera motion

simultaneously. In the case of monocular vision and inertial measure-

ments many of these parameters can be estimated fairly well using linear

methods. Also, the linear methods can efficiently be used for iterative

outlier removal. Combined, these constitute a good initial guess for the

total SLAM problem.
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Introduction
In this work we present a solution to the simultaneous localisation and

mapping (SLAM) problem using a camera and inertial sensors. Our ap-

proach is based on a clustering of feature tracks which are fused with

inertial data in a linear estimator. The linear solution is combined with

an outlier rejection step and requires only a few iterations to converge

while removing most outliers. The final step takes the linear solution as

a starting point in a standard nonlinear least-squares solver which effi-

ciently solve the total SLAM, including additive sensor biases and global

scale. This approach is evaluated using both real and simulated data.

Problem Formulation
Contrary to standard SLAM formulations we consider a parameter esti-

mation problem using camera and inertial measurements on the form

arg min
Θ

∑
t

||yt − h(xt,Θ)||2R−1,

subject to xt = f (xt−1,Θ),

where the parameter vector Θ = [M, B, v0, A, Ω], consist of landmark

coordinates M, IMU biases B, initial velocity v0, and navigation frame

accelerations A and angular rates Ω, respectively. The pose and velocity,

x = [p, v, q]T , are considered nuisance variables. This estimation prob-

lem is nonlinear and a good initial value for Θ is needed. We will show

how this can be done efficiently exploiting the inherent linear structures.

Linear Models
A calibrated perspective camera act as mapping P ([X, Y, Z]) =

[X/Z, Y/Z] and normalized camera measurement yit = [uit, v
i
t]
T of land-

mark i at time t is then

yit = P (Rcw
t (mi

t−pt)︸ ︷︷ ︸
[Xc,Y c,Zc]T

) + et (1)

which relates the absolute pose of the camera to the 3D location of the

point. Note that the pose is a function of Θ. From (1), a linear system

with parameter dependent noise is given by[
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eu

ev

]
. (2)

If if two or more measurements are available (2) can be iteratively solved

by initializing a Z̄c for the right hand side and solve the resulting linear

least squares problem and then re-weight the problem with the new Zc∗.

This procedure usually converges after a few iterations.
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The constraints can be removed since the translational part of the dy-

namics is linear

xt = Fxt−1 + G at

then, for an arbitrary time instance

xt = F tx0 +

t−1∑
k=0

F kG ak+1 = D Θ

which is a linear system in Θ. This assumes that the rotations, q, are

solved, which can be done using the e.g., the 8-point algorithm.

Iterative Outlier Removal
Feature tracks contain outliers which are defined in a reprojection error

sense. A simple strategy, similar to L∞ outlier removal, is used. It is

assumed that the errors can be detected from the linear solution alone.

By successively removing landmarks with the largest reprojection errors

within an image and then update the linear solution. This metod con-

verges when all errors are of similar size.

Nonlinear Refinement
As a final step, a nonlinear least-squares solver is used to optimize the

unconstrained problem

arg min
Θ

∑
t

||yt − h(Θ)||2R−1,

which also accounts for sensor biases, the initial velocity and the rotation.

Results
The left image shows the camera-only initial rotation (dashed) and the

final estimated rotation (solid) which is very close to the truth. The right

image shows the angular rate before (dashed) and after bias compensa-

tion (solid).
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Data set OL left IL removed OL landmarks SLAM iterations

1 0 5.6% 11% 16

2 0 3.8% 21% 6

3 2 1.1% 8% 7

Real data 1 1.7% 8% 18

•Future work includes solving the problem using Expectation Maximiza-

tion.

•Elaborate on joint estimation of the full SLAM problem including data

association.
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